Talvez por essa razão, a existência do universo como um todo, sua natureza e origem foram assuntos de explicação em quase todas as civilizações e culturas. De fato, cada civilização conhecida da antropologia teve uma cosmogonia – uma história de como o mundo começou e continua, de como os homens surgiram e do que os deuses esperam d

É surpreendente que possamos entender o universo físico de forma racional e que ele possa ser pesquisado pelos métodos da física e da astronomia desenvolvidos nos nossos laboratórios e observatórios. A percepção dessa dimensão e da capacidade científica nos foi revelada de forma mais plena nas décadas de 10, 20 e 30 do século XX. Mas a história da cosmologia (a estrutura do universo) e da cosmogonia (a origem do universo) não começou, nem parou aí.

Cosmologias da Terra plana
reencarnação e as configurações físicas deveriam acomodá-la, incluindo os diversos níveis de céus e infernos por ela demandada. Para os hindus – por exemplo – o universo era um ovo redondo coberto por sete cascas concêntricas feitas com distintos elementos. Já os babilônios imaginavam um universo em duas camadas conectadas por uma escada cósmica. A civilização maia era fortemente dependente do milho e das chuvas, muitas vezes escassas, que vinham do céu. Para eles, no começo havia apenas o céu, o mar e o criador; esse, após várias tentativas fracassadas, conseguiu construir pessoas a partir de milho e água.
No antigo testamento judaico-cristão, a Terra era relatada em conexão ao misterioso firmamento, às águas acima do firmamento, às fontes do abismo, ao limbo e à casa dos ventos. O livro do Gênesis narra, também, que o universo teve um começo: "No princípio Deus criou os céus e a Terra. A Terra, porém, estava informe e vazia; as trevas cobriam o abismo e o Espírito de Deus pairava sobre as águas. Deus disse: ‘Faça-se a luz’. E a luz foi feita. Deus viu que a luz era boa, e separou a luz das trevas. Deus chamou à luz DIA, e às trevas NOITE. Houve uma tarde e uma manhã: foi o primeiro dia".
Modelos geocêntricos
Esse modelo geocêntrico grego teve outros aperfeiçoamentos. Erastóstenes (c.276-c.194 a.C., escritor grego, nascido na atual Líbia) mediu a circunferência da Terra por método experimental, obtendo um valor cerca de 15% maior do que o valor real. Já Ptolomeu (Claudius Ptolomeus, segundo século a.C., astrônomo e geógrafo egípcio) modificou o modelo de Aristóteles, introduzindo os epiciclos, isto é, um modelo no qual os planetas descrevem movimentos de pequenos círculos que se movem sobre círculos maiores, esses centrados na Terra.
A teoria heliocêntrica
A idéia de que o Sol está no centro do universo e de que a Terra gira em torno dele, conhecida como a teoria heliocêntrica, já havia sido proposta por Aristarco de Samos (c.320 – c.250 a.C., matemático e astrônomo grego); ele propôs essa teoria com base nas estimativas dos tamanhos e distâncias do Sol e da Lua. Concluiu que a Terra gira em torno do Sol e que as estrelas formariam uma esfera fixa, muito distante. Essa teoria atraiu pouca atenção, principalmente porque contradizia a teoria geocêntrica de Aristóteles, então com muito prestígio e, também, porque a idéia de que a Terra está em movimento não era muito atraente.
Cerca de dois mil anos mais tarde, Copérnico (Nicolaus Copernicus, 1473-1543, astrônomo polonês) descreveu o seu modelo heliocêntrico, em 1510, na obra Commentariolus, que circulou anonimamente; Copérnico parece ter previsto o impacto que sua teoria provocaria, tanto assim que só permitiu que a obra fosse publicada após a sua morte. A teoria foi publicada abertamente em 1543 no livro De Revolutionibus Orbium Coelesti e dedicada ao papa Paulo III.
O modelo heliocêntrico provocou uma revolução não somente na astronomia, mas também um impacto cultural com reflexos filosóficos e religiosos. O modelo aristotélico havia sido incorporado de tal forma no pensamento, que tirar o homem do centro do universo acabou se revelando uma experiência traumática.
Por fim, o modelo heliocêntrico de Copérnico afirmou-se como o correto. Mas por que o modelo de Aristarco de Samos não sobreviveu, cerca de 2.000 anos antes, se afinal também estava certo? Basicamente porque, para fins práticos, não fazia muita diferença quando comparado com o modelo geocêntrico. As medidas não eram muito precisas e tanto uma teoria quanto a outra davam respostas satisfatórias. Nesse caso, o modelo geocêntrico parecia mais de acordo com a prática do dia-a-dia; além disso, era um modelo homocêntrico, o que estava em acordo com o demandado por escolas filosóficas e teológicas.
Após a publicação da teoria de Copérnico, no entanto, alguns avanços técnicos e científicos fizeram que ela se tornasse claramente superior ao sistema de Ptolomeu. Tycho Brahe (1546-1601, astrônomo dinamarquês) teve um papel importante ao avançar as técnicas de fazer medidas precisas com instrumentos a olho nu, pois lunetas e telescópios ainda não haviam sido inventados. Essas medidas eram cerca de dez vezes mais precisas do que as medidas anteriores. Em 1597 ele se mudou para Praga, onde contratou, em 1600, Johannes Kepler (1571-1630, matemático e astrônomo alemão) como seu assistente. Mais tarde, Kepler usou as medidas de Tycho para estabelecer suas leis de movimento dos planetas. Essas leis mostravam que as órbitas que os planetas descrevem são elipses, tendo o Sol em um dos focos. Com isso, cálculos teóricos e medidas passaram a ter uma concordância muito maior do que no sistema antigo. Se não por outro motivo, essa precisão e a economia que ela propiciava seriam tão importantes para as grandes navegações que ela se imporia por razões práticas.
Galileu, ao desenvolver a luneta, criou um instrumento vital para a pesquisa astronômica, pois amplia, de forma extraordinária, a capacidade do olho humano. Apontando para o Sol, descobriu as manchas solares; apontando para Júpiter, descobriu as quatro primeiras luas; e ao olhar para a Via-Láctea, mostrou que ela é composta por miríades de estrelas.
Nenhum comentário:
Postar um comentário